Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites.

Identifieur interne : 000480 ( Main/Exploration ); précédent : 000479; suivant : 000481

TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites.

Auteurs : Françoise M. Roelants [États-Unis] ; Neha Chauhan [États-Unis] ; Alexander Muir [États-Unis] ; Jameson C. Davis [États-Unis] ; Anant K. Menon [États-Unis] ; Timothy P. Levine [Royaume-Uni] ; Jeremy Thorner [États-Unis]

Source :

RBID : pubmed:29927351

Descripteurs français

English descriptors

Abstract

In our proteome-wide screen, Ysp2 (also known as Lam2/Ltc4) was identified as a likely physiologically relevant target of the TOR complex 2 (TORC2)-dependent protein kinase Ypk1 in the yeast Saccharomyces cerevisiae. Ysp2 was subsequently shown to be one of a new family of sterol-binding proteins located at plasma membrane (PM)-endoplasmic reticulum (ER) contact sites. Here we document that Ysp2 and its paralogue Lam4/Ltc3 are authentic Ypk1 substrates in vivo and show using genetic and biochemical criteria that Ypk1-mediated phosphorylation inhibits the ability of these proteins to promote retrograde transport of sterols from the PM to the ER. Furthermore, we provide evidence that a change in PM sterol homeostasis promotes cell survival under membrane-perturbing conditions known to activate TORC2-Ypk1 signaling. These observations define the underlying molecular basis of a new regulatory mechanism for cellular response to plasma membrane stress.

DOI: 10.1091/mbc.E18-04-0229
PubMed: 29927351
PubMed Central: PMC6232965


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites.</title>
<author>
<name sortKey="Roelants, Francoise M" sort="Roelants, Francoise M" uniqKey="Roelants F" first="Françoise M" last="Roelants">Françoise M. Roelants</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chauhan, Neha" sort="Chauhan, Neha" uniqKey="Chauhan N" first="Neha" last="Chauhan">Neha Chauhan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Biochemistry, Weill Cornell Medical College, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Muir, Alexander" sort="Muir, Alexander" uniqKey="Muir A" first="Alexander" last="Muir">Alexander Muir</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Davis, Jameson C" sort="Davis, Jameson C" uniqKey="Davis J" first="Jameson C" last="Davis">Jameson C. Davis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Menon, Anant K" sort="Menon, Anant K" uniqKey="Menon A" first="Anant K" last="Menon">Anant K. Menon</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Biochemistry, Weill Cornell Medical College, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Levine, Timothy P" sort="Levine, Timothy P" uniqKey="Levine T" first="Timothy P" last="Levine">Timothy P. Levine</name>
<affiliation wicri:level="4">
<nlm:affiliation>UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>UCL Institute of Ophthalmology, University College London, London EC1V 9EL</wicri:regionArea>
<orgName type="university">University College de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thorner, Jeremy" sort="Thorner, Jeremy" uniqKey="Thorner J" first="Jeremy" last="Thorner">Jeremy Thorner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29927351</idno>
<idno type="pmid">29927351</idno>
<idno type="doi">10.1091/mbc.E18-04-0229</idno>
<idno type="pmc">PMC6232965</idno>
<idno type="wicri:Area/Main/Corpus">000523</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000523</idno>
<idno type="wicri:Area/Main/Curation">000523</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000523</idno>
<idno type="wicri:Area/Main/Exploration">000523</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites.</title>
<author>
<name sortKey="Roelants, Francoise M" sort="Roelants, Francoise M" uniqKey="Roelants F" first="Françoise M" last="Roelants">Françoise M. Roelants</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chauhan, Neha" sort="Chauhan, Neha" uniqKey="Chauhan N" first="Neha" last="Chauhan">Neha Chauhan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Biochemistry, Weill Cornell Medical College, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Muir, Alexander" sort="Muir, Alexander" uniqKey="Muir A" first="Alexander" last="Muir">Alexander Muir</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Davis, Jameson C" sort="Davis, Jameson C" uniqKey="Davis J" first="Jameson C" last="Davis">Jameson C. Davis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Menon, Anant K" sort="Menon, Anant K" uniqKey="Menon A" first="Anant K" last="Menon">Anant K. Menon</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Biochemistry, Weill Cornell Medical College, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Levine, Timothy P" sort="Levine, Timothy P" uniqKey="Levine T" first="Timothy P" last="Levine">Timothy P. Levine</name>
<affiliation wicri:level="4">
<nlm:affiliation>UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>UCL Institute of Ophthalmology, University College London, London EC1V 9EL</wicri:regionArea>
<orgName type="university">University College de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thorner, Jeremy" sort="Thorner, Jeremy" uniqKey="Thorner J" first="Jeremy" last="Thorner">Jeremy Thorner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Membrane (metabolism)</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Homeostasis (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Domains (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (chemistry)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sphingolipids (metabolism)</term>
<term>Sterols (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Domaines protéiques (MeSH)</term>
<term>Homéostasie (MeSH)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (composition chimique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Réticulum endoplasmique (métabolisme)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sphingolipides (métabolisme)</term>
<term>Stress physiologique (MeSH)</term>
<term>Stérols (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sphingolipids</term>
<term>Sterols</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Endoplasmic Reticulum</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Membrane cellulaire</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Réticulum endoplasmique</term>
<term>Saccharomyces cerevisiae</term>
<term>Sphingolipides</term>
<term>Stérols</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Homeostasis</term>
<term>Phosphorylation</term>
<term>Protein Domains</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Domaines protéiques</term>
<term>Homéostasie</term>
<term>Phosphorylation</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In our proteome-wide screen, Ysp2 (also known as Lam2/Ltc4) was identified as a likely physiologically relevant target of the TOR complex 2 (TORC2)-dependent protein kinase Ypk1 in the yeast Saccharomyces cerevisiae. Ysp2 was subsequently shown to be one of a new family of sterol-binding proteins located at plasma membrane (PM)-endoplasmic reticulum (ER) contact sites. Here we document that Ysp2 and its paralogue Lam4/Ltc3 are authentic Ypk1 substrates in vivo and show using genetic and biochemical criteria that Ypk1-mediated phosphorylation inhibits the ability of these proteins to promote retrograde transport of sterols from the PM to the ER. Furthermore, we provide evidence that a change in PM sterol homeostasis promotes cell survival under membrane-perturbing conditions known to activate TORC2-Ypk1 signaling. These observations define the underlying molecular basis of a new regulatory mechanism for cellular response to plasma membrane stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29927351</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2018</Year>
<Month>08</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites.</ArticleTitle>
<Pagination>
<MedlinePgn>2128-2136</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E18-04-0229</ELocationID>
<Abstract>
<AbstractText>In our proteome-wide screen, Ysp2 (also known as Lam2/Ltc4) was identified as a likely physiologically relevant target of the TOR complex 2 (TORC2)-dependent protein kinase Ypk1 in the yeast Saccharomyces cerevisiae. Ysp2 was subsequently shown to be one of a new family of sterol-binding proteins located at plasma membrane (PM)-endoplasmic reticulum (ER) contact sites. Here we document that Ysp2 and its paralogue Lam4/Ltc3 are authentic Ypk1 substrates in vivo and show using genetic and biochemical criteria that Ypk1-mediated phosphorylation inhibits the ability of these proteins to promote retrograde transport of sterols from the PM to the ER. Furthermore, we provide evidence that a change in PM sterol homeostasis promotes cell survival under membrane-perturbing conditions known to activate TORC2-Ypk1 signaling. These observations define the underlying molecular basis of a new regulatory mechanism for cellular response to plasma membrane stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Roelants</LastName>
<ForeName>Françoise M</ForeName>
<Initials>FM</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chauhan</LastName>
<ForeName>Neha</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Muir</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Davis</LastName>
<ForeName>Jameson C</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Menon</LastName>
<ForeName>Anant K</ForeName>
<Initials>AK</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Levine</LastName>
<ForeName>Timothy P</ForeName>
<Initials>TP</Initials>
<AffiliationInfo>
<Affiliation>UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thorner</LastName>
<ForeName>Jeremy</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/M011801/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/P003818/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>R01 GM021841</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>BB/P003818</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013107">Sphingolipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013261">Sterols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C000621797">YPK1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013107" MajorTopicYN="N">Sphingolipids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013261" MajorTopicYN="N">Sterols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29927351</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E18-04-0229</ArticleId>
<ArticleId IdType="pmc">PMC6232965</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2014 Jul;34(14):2660-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24820415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1366-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16962064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 May 12;5:9685</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25965669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Jun 12;290(24):14963-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25882841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 18;320(5874):362-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18420932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2017 Mar 17;37(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28069741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2000 May;7(5):408-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2014 May;14(3):369-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24520995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2011 Oct;12(10):1341-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21689253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Nov 12;143(4):639-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21035178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2017 Nov 15;19(44):30078-30088</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29098221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2017 Sep 4;216(9):2679-2689</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28774891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2010 Feb;10(1):14-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19744247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;351:127-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 May;122(1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 22;279(43):45226-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2011 May 01;3(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Apr;125(2):299-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8163547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):E856-E865</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29339490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2010 Nov;137(21):3675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20940226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2016 Jan;61:30-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26658141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2014 Oct 15;25(20):3234-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25143408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Nov;32(22):4705-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22988299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Phys Lipids. 2016 Sep;199:136-143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27179407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):34-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19966303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2015 May 25;209(4):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25987606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Aug;83(15):5563-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3526336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2016 Apr 15;44(2):486-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27068959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 May 22;4:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26001273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Aug 14;4:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26274562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2016 Dec 01;473(23):4311-4325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27671892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cell Mol Biol. 2016;321:299-340</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26811291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2018 Mar 15;37(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29467216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Mar 30;543(7647):681-686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28329758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1978 Oct;75(10):4962-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">368805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2017 Feb;42(2):90-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27956059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2018 Apr 13;293(15):5522-5531</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29463678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2016 Apr 15;44(2):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27068964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2008 Feb 25;180(4):813-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18299351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 1;278(31):28831-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12754197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Biophys J. 2014 Nov;43(10-11):453-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25173562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15400-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2010;51:425-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20213553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Oct 03;3:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25279700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 May;203(1):299-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26920760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 2016 Dec;94(6):499-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27421092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1854(6):601-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25315852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 1;327(5961):46-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2010;26:157-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2014;58(4):2409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24395234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2012 Apr 15;14(5):542-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22504275</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Angleterre</li>
<li>Californie</li>
<li>Grand Londres</li>
<li>État de New York</li>
</region>
<settlement>
<li>Londres</li>
</settlement>
<orgName>
<li>University College de Londres</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Roelants, Francoise M" sort="Roelants, Francoise M" uniqKey="Roelants F" first="Françoise M" last="Roelants">Françoise M. Roelants</name>
</region>
<name sortKey="Chauhan, Neha" sort="Chauhan, Neha" uniqKey="Chauhan N" first="Neha" last="Chauhan">Neha Chauhan</name>
<name sortKey="Davis, Jameson C" sort="Davis, Jameson C" uniqKey="Davis J" first="Jameson C" last="Davis">Jameson C. Davis</name>
<name sortKey="Menon, Anant K" sort="Menon, Anant K" uniqKey="Menon A" first="Anant K" last="Menon">Anant K. Menon</name>
<name sortKey="Muir, Alexander" sort="Muir, Alexander" uniqKey="Muir A" first="Alexander" last="Muir">Alexander Muir</name>
<name sortKey="Thorner, Jeremy" sort="Thorner, Jeremy" uniqKey="Thorner J" first="Jeremy" last="Thorner">Jeremy Thorner</name>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Levine, Timothy P" sort="Levine, Timothy P" uniqKey="Levine T" first="Timothy P" last="Levine">Timothy P. Levine</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000480 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000480 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29927351
   |texte=   TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29927351" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020